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Problem Statement 
 
The blood-brain barrier is a series of tight junctions between endothelial cells and a thick 
basement membrane that serves to separate circulating blood in the brain and the brain 
extracellular fluid.[1] This barrier prevents the diffusion of bacteria and hydrophilic molecules, 
and allows the movement of hydrophobic molecules, such as oxygen. The tight junction 
between cells is composed of transmembrane proteins such as occludin and claudins.[2] The 
cells in the brain capillaries are at a higher density than the cells in other capillaries and this also 
helps restrict the passage across the blood-brain barrier. The basement membrane lies directly 
underneath the endothelium and is composed of two lamina - the basal lamina and the reticular 
lamina.[3] 

 
Safe passage of drugs across the blood-brain barrier is a major limitation of current therapeutics 
for the brain. Therefore, it would be useful to model the diffusion of a potential drug across the 
blood-brain barrier to determine the distance it travels across the barrier for a given systemic 
concentration. The information obtained from this model can be used to determine what 
systemic concentration of a drug is necessary to reach a target distance across the blood-brain 
barrier. 
 
For our model, as seen in Figure 1, we chose to model the diffusion of oxygen into the brain, a 
molecule that is known to diffuse regularly across the blood-brain barrier. To translate our model 
for oxygen to a model for a potential drug, we would simply substitute the diffusivity value of the 
drug, obtained from literature, and the expected concentration of drug in the body once it is 
administered. 
Boundary conditions are important for our model. For our purposes, we will take the location at 
which the blood meets the blood-brain barrier as our zero point for distance (x=0) and set our 
target distance (x=L) to 400nm, which is the average length of the blood-brain barrier. At the 
interface between the blood and the barrier, we designated an initial concentration of oxygen 
(C0), choosing the value 0.02945 L / L blood. As discussed earlier, this constant concentration 
value can be changed to see the effect on species diffusion through the blood-brain barrier. We 
also set our oxygen concentration at x=L to 0, assuming that all of the oxygen is immediately 
consumed once it reaches the end of the blood-brain barrier. 
 
In order to solve this one-dimensional linear partial differential equation, both analytically and 
numerically, several simplifications were put into effect: 
 

1) There will be no oxygen initially present in the brain or in the blood-brain barrier. This is 
an important assumption as it allows us to set an initial condition to our equation for 
concentration at time t = 0. Of course, in a healthy human, physiological oxygen 
concentrations would be greater than zero, but this is a necessary assumption to simplify 
the math. 

2) There will be an oxygen gradient as oxygen diffuses through the blood-brain barrier, but 
at the interface of the barrier and the brain tissue, all oxygen will be consumed. This 
does not take into consideration the fact that normally, oxygen needs to diffuse into the 
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interior brain tissues as well so that those regions can get their necessary supply of 
oxygen. However, it is an imperative assumption in order to establish a boundary 
condition for concentration of oxygen at the edge of the blood-brain barrier. This sets 
concentration at x = L to 0 liters of oxygen per liter of blood. 

3) There will be a constant concentration of oxygen in the bloodstream, set at the 
physiological concentration of oxygen in a normal, healthy adult human. Although blood 
oxygen concentration is constantly changing, this will allow us to set up a second 
boundary condition for concentration of oxygen at the interface of the blood vessel and 
the blood-brain barrier. It sets the concentration at x = 0 to 0.02945 liters of oxygen per 
liter of blood. 

4) The diffusivity of oxygen that will be assigned will be based on the diffusivity of oxygen in 
water. This is because, although our oxygen molecules will be traveling through blood, 
cellular junctions, and brain tissue, water is a predominant component of each of these 
levels and thus we can approximate the diffusivity of oxygen through the blood-brain 
barrier to be similar to the diffusivity of oxygen through water, which is 3.24*10^-5 
cm^2/s.  

5) One-dimensional linear diffusion of oxygen is a necessary and valid assumption to make 
since we are focusing in on a small-scale region of the blood-brain barrier. Since we are 
looking at such a small area, we can assume the oxygen travels in a straight line from 
one side of the barrier to the other. In reality, the blood vessels follow a convoluted path 
and, given that blood is constantly flowing, the oxygen molecules are not likely to travel 
in a perfectly linear path. 

6) This model must apply not only to oxygen, but to other drugs as well in order to consider 
the diffusion of a drug through the blood-brain barrier. Oxygen has been used because it 
is a small molecule known to easily pass through this barrier, however, drugs are much 
larger and as a result would have much lower diffusivities in aqueous solutions. We will 
use this oxygen diffusion model and input it into MATLAB with significantly lower 
diffusivity constants to simulate the diffusion of drugs. 
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Figure 1. Depicts the model for this one-dimensional linear differential equation with the dark grey circles 
representing Oxygen molecules and the red membrane representing the blood brain barrier. As shown, oxygen 
molecules readily diffuse from the blood across the barrier and into the brain. This analytical and numerical 
analysis aims to model this phenomenon.  

 
 

Analytical Solution 
 

Initial Conditions: 
𝐶 𝑥, 0 = 0 

 
Boundary Conditions: 

      𝐶 𝐿, 𝑡 = 0   
𝐶 0, 𝑡 = 𝐶! 

 
Our concentration profile is equal to the steady-state solution plus the transient solution: 

𝐶 𝑥, 𝑡 = 𝐶! +   𝐶!! 
 

Partial Differentiation Equation: 
𝜕𝐶(𝑥, 𝑡)
𝜕𝑡

= 𝐷
𝜕!𝐶(𝑥, 𝑡)
𝜕𝑥!

 

 
In a steady-state condition, the concentration does not change with time: 

𝜕𝐶 𝑥, 𝑡
𝜕𝑡

= 0 

 
Therefore, our PDE becomes: 

𝐷
𝜕!𝐶(𝑥, 𝑡)
𝜕𝑥!

= 0 



 5 

 
Integration of the above equation yields: 

𝐶 = 𝑎𝑥 + 𝑏 
 

Plug in boundary conditions to find a & b: 
𝑏 =   𝐶!   

𝑎 =   −
𝐶!
𝐿

 

 
Therefore, the steady-state solution, 𝐶!! 𝑥  equals: 

𝐶!! 𝑥 = −   
𝐶!
𝐿
𝑥 + 𝐶! 

 
Since our BCs are nonhomogeneous, we must transform the BCs: 

𝐶! 𝐿, 𝑡 = 𝐶 𝐿, 𝑡 − 𝐶!! 0 = 0 − 0 = 0 
𝐶! 0, 𝑡 = 𝐶 0, 𝑡 − 𝐶!! 𝐿 = 𝐶! − 𝐶! = 0 

 
We also must transform the IC: 

𝐶! 𝑥, 0 = 𝐶 𝑥, 0 − 𝐶!! 𝑥 = 0 − (−
𝐶!
𝐿
𝑥 + 𝐶!)   =   

𝐶!
𝐿
𝑥 −   𝐶!   

 
In order to continue with the PDE, we must solve via separation of variables: 

𝐶! 𝑥, 𝑡 =   𝜑 𝑥 𝐺 𝑡  
 

Using this in the original PDE, and rearranging the variables yield: 

𝜑 𝑥
𝜕𝐺 𝑡
𝜕𝑡

= 𝐷
𝜕!𝜑 𝑥
𝜕𝑥!

𝐺(𝑡) 

 
𝜕!𝜑 𝑥
𝜕𝑥!
𝜑(𝑥)

=
𝜕𝐺(𝑡)
𝜕𝑡

1
𝐺 𝑡 𝐷

=   −𝜆 

 
Time-dependent function: 

𝑑𝐺(𝑡)
𝑑𝑡

= −𝜆𝐷𝐺(𝑡) 

𝐺 𝑡 = 𝐺!𝑒!!"# 
 
 

Spatially-dependent function: 
𝑑!Φ(𝑥)
𝑑𝑥!

= −𝜆Φ(𝑥) 

𝑑!Φ(𝑥)
𝑑𝑥!

+ 𝜆Φ 𝑥 = 0 

 
Φ 𝑥 = 𝐴𝑐𝑜𝑠 𝜆𝑥 + 𝐵𝑠𝑖𝑛( 𝜆𝑥) 
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Plug in the BCs: 

Φ 0 = 0 = 𝐴𝑐𝑜𝑠 0 + 𝐵𝑠𝑖𝑛(0) 
𝐴 = 0 

 
Φ 𝐿 = 0 = 𝐴𝑐𝑜𝑠 𝜆𝐿 + 𝐵𝑠𝑖𝑛( 𝜆𝐿) 

𝐵𝑠𝑖𝑛( 𝜆𝐿) = 0 
𝐵 = 0 

 
Since both A and B equal zero here, the solution is trivial. Therefore, one of the following must 

be true: 
 

′𝐵′  &  ′cosine′ = 0, 
in which case: 

𝜆 =
(2𝑛 + 1)𝜋

2𝐿
 

 
-or- 

 
′𝐴′  &  ′sine′ = 0 
in which case: 

𝜆 =
𝑛𝜋
𝐿

 

 
Thus we now combine these with both the time-dependent function, G(t), and the spatially-

dependent function, Φ 𝑥 : 
 

C x, t = 𝐴𝑐𝑜𝑠
2𝑛 + 1 𝜋
2𝐿

𝑥 𝑒!!
!!!! !
!!

!
!        𝑛 = 0,1,2,3… 

C x, t = 𝐵𝑠𝑖𝑛
(𝑛𝜋
𝐿

𝑥 𝑒!!
(!"
!

!
!            𝑛 = 1,2,3… 

 

C x, t = 𝐴𝑐𝑜𝑠
2𝑛 + 1 𝜋
2𝐿

𝑥 𝑒!!
!!!! !
!!

!
!

!

!!!

+ 𝐵𝑠𝑖𝑛
𝑛𝜋
𝐿

𝑥 𝑒!!
!"
!

!
!

!

!!!

 

 
Plugging in boundary condition of C(0,t) = 0, we can drop the “cosine” term as that can only be 

equal to zero if A = 0. Thus we are left with: 

C x, t = 𝐵𝑠𝑖𝑛
𝑛𝜋
𝐿

𝑥 𝑒!!
!"
!

!
!

!

!!!
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Add the particular solution to get a general solution of: 

C x, t = 𝐵𝑠𝑖𝑛
𝑛𝜋
𝐿

𝑥 𝑒!!
!"
!

!
!

!

!!!

+ 𝐶! 1 −
1
𝐿
𝑥  

 
To solve for the value of the constant B, plug in initial condition at C(x,0) = 0 

C x, t = 0 = 𝐵𝑠𝑖𝑛
𝑛𝜋
𝐿

𝑥 𝑒!!
!"
!

!
(!)

!

!!!

+ 𝐶! 1 −
1
𝐿
𝑥  

C x, t = 0 = 𝐵!𝑠𝑖𝑛
𝑛𝜋
𝐿

𝑥
!

!!!

+ 𝐶! 1 −
1
𝐿
𝑥  

 
Rearrange the terms to get the following equation: 

𝐶!
1
𝐿
𝑥 − 1 = 𝐵!𝑠𝑖𝑛

𝑛𝜋
𝐿

𝑥
!

!!!

 

 

Multiply both sides by  𝑠𝑖𝑛 !"
!
𝑥 : 

𝐶!
1
𝐿
𝑥 − 1 ∗ 𝑠𝑖𝑛

𝑛𝜋
𝐿

𝑥 = 𝐵!𝑠𝑖𝑛
𝑛𝜋
𝐿

𝑥 ∗ 𝑠𝑖𝑛
𝑛𝜋
𝐿

𝑥
!

!!!

 

 
Integrate: 

𝐶!
1
𝐿
𝑥 − 1 ∗ 𝑠𝑖𝑛

𝑛𝜋
𝐿

𝑥 𝑑𝑥
!

!

= 𝐵!𝑠𝑖𝑛
𝑛𝜋
𝐿

𝑥 ∗ 𝑠𝑖𝑛
𝑛𝜋
𝐿

𝑥
!

!!!

𝑑𝑥
!

!

 

 
Simplify this to become: 

𝐶!
1
𝐿
𝑥 − 1 ∗ 𝑠𝑖𝑛

𝑛𝜋
𝐿

𝑥 𝑑𝑥
!

!

= 𝐵!
𝐿
2
        𝑖𝑓  𝑚 = 𝑛       − 𝑜𝑟−        = 0  𝑖𝑓  𝑚 ≠ 𝑛 

 
Therefore, our Bm equals: 

2
𝐿

𝐶!
1
𝐿
𝑥 − 1 ∗ 𝑠𝑖𝑛

𝑚𝜋
𝐿

𝑥 𝑑𝑥
!

!

= 𝐵! 

 
Simplify this to solve for Bm: 

𝐵! =
−2𝐶!
𝑚𝜋

 

Plugging this back into our equation yields the complete concentration profile: 
 

𝐶(𝑥, 𝑡) =
−2𝐶!
𝑚𝜋

𝑠𝑖𝑛
𝑛𝜋
𝐿

𝑥
!

!!!

𝑒!!
!"
!

!
!+𝐶! 1 −

1
𝐿
𝑥  
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Limitations 
 
Although our model promises to give a strong prediction of diffusion of a species across the 
blood-brain barrier, it is limited by the assumptions we made to simplify the model. One of these 
assumptions, that the concentration of oxygen at the blood-brain barrier-brain interface is zero, 
is especially simplifying and could have a significant impact on the model if it is not made. To 
account for this, our model can be further complicated by introducing a new term: a differential 
equation for the consumption of oxygen in the brain with respect to distance. Introducing this 
term, we could accurately assess the proper concentration at our target distance in the brain, 
and thus have a more accurate model for oxygen, and ultimately drug, diffusion. 
 
A further limitation we have with our oxygen model is the assumption that the initial 
concentration of oxygen in the brain is zero. This assumption was made to simplify the 
analytical solution when solving the system of partial differential equations. To produce a more 
accurate oxygen diffusion model, we would have to further complicated our analytical solution 
by introducing an the value for initial concentration of oxygen in the brain, which would be 
obtained from literature. However, although this seems like an enormous assumption to make 
when it comes to oxygen modeling, this case proves to be true when this model is used for drug 
delivery applications. When a drug is introduced to the blood stream, it is a perfectly good 
assumption that there is no drug initially present inside the brain. Therefore, this model can be 
applied as it is for drug delivery analysis. 
 

Numerical Validation 
 
The solutions were plotted analytically, by solving the mathematical equation by hand, and also 
numerically by using the pde function in MATLAB. Solutions were plotted for 100 terms, with 
varying diffusivity constants between simulations. All graphs follow the general trend, shown in 
Figure 2, in which for all distance equal to zero the concentration is C0, held steady by our first 
boundary condition. Our second boundary condition ensures for all distance equal to L the 
concentration goes to zero, assuming the brain acts as a perfect sink.  
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Figure 2. Displays analytical approximation model of oxygen diffusing through the blood brain barrier and into the 
brain with a diffusivity constant of 3.24 * 10^(-5) cm^2/s. 

 
Figure 2 drops below zero at u(0,0) as a result of the sine function in the analytical solution. 
Next, we compared our analytical solution to the numerical solution found using the pde solver 
in MATLAB, shown in Figure 3.  
 

 

Figure 3. Compares the numerical solution found by using pde function in MATLAB, left, to the analytical solution 
found by hand, right. Both graphs utilize a diffusivity constant of 3.24 * 10^(-5) cm^2/s. 

When comparing our analytical solution to the numerical solution, we were pleased to see that 
the MATLAB pde function generated very similar concentration plots for our system. Finally, we 
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simulated different drug diffusivity constants over the same time scale to view the effect of 
changing diffusivity on tissue concentration, Figure 4. 
 

 

Figure 4. Displays the changes in concentration for different diffusivities using numerical simulation. Left plot has a 
diffusivity constant of 3.24 * 10^(-6) C, and the right plot has a diffusivity constant of 3.24 * 10^(-7) cm^2/s. 

 
The altered diffusivity values represent different diffusivity values for potential drugs passing 
through the blood-brain barrier. As the diffusivity constant decreases, the concentration of 
oxygen, or drug, which diffused through the blood-brain barrier in the same time period also 
decreases.  
 

Conclusions 
 
In this study we have established a model for one-dimensional diffusion of oxygen through the 
blood-brain barrier. As we can see from our graphs, our numerical solution very closely 
resembles our analytical solution. This is most likely due to our simple model and the fact that 
we did not have to make too many assumptions to solve it analytically. We will most likely see 
more divergence in our solutions if we increased the the complexity of the model. Our numerical 
model would be more correct. Our simplistic model is obviously not going to be too effective in a 
real world scenario, but it will serve well for initial predictions and as a proof of concept.  
 
Further, our model can be used to model the diffusion of a drug across the blood-brain barrier 
as well. For example if we were looking at a drug(L-DOPA) with a diffusivity of 3.24 * 10^(-6) 
cm^2/s and we needed a therapeutic dosage 28 uM within 10^(-6)s (assuming our drug was 
injected as a bolus directly outside the blood-brain barrier) then our model suggest that we 
would need a concentration of .1 mM drug/L in the blood. As expected, with lowering diffusivity 
values the diffusing species does not diffuse as far. We can use this to estimate the 
effectiveness of drugs crossing the blood-brain barrier.  
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Appendix 
 
Matlab code for Analytical Solution 
%Blood Brain Barrier 
clear all;  
close all;  
clc;  
  
distance_step = 1e-3;  
time_step = 1e3;  
  
C0 = .02945; %.02945 L O2/ L bld .02945 
D = 0.0000324; % cm^2/s diffusivity of oxygen in water 
L = 400e-7; % cm legnth of diffusion area 
final_time = .00001; % s  
  
x = linspace(0,L,50); 
t = linspace(0,final_time,50); 
c = zeros(length(x),length(t));  
  
  
for index_x=1:1:length(x)  
 for index_t=1:1:length(t)  
 total = 0;  
  
 for n=1:1:100 %  
     Bm = -2*C0/n/pi; 
 total = total + Bm * exp(-D*t(index_t)*(n*pi/L)^2)... 
     * sin(((n*pi/L)*x(index_x)));  
  
end  
 c(index_x,index_t) = C0*(-x(index_x)/L + 1) + total;  
  
 end  
end  
  
  
figure(1);  
surf(t,x,c);  
xlabel('Time (s)');  
ylabel('Distance (cm)');  
zlabel('Concentration (L O2/ L bld)');  
title('Concentration - Analytical');  
  
figure 
plot(t,c) 
title('Solution - Analytical') 
xlabel('Time (s)') 
ylabel('Concentration (L O2/ L bld)') 
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Matlab code for Numerical Solution 
function Project_pde 
%Blood Brain Barrier 
  
global D 
global C0 
global L 
  
C0 = .02945; %.02945 L O2/ L bld 
D = 0.0000324; % 0.0000324 cm^2/s diffusivity of oxygen in water 
L = 400e-7; % cm legnth of diffusion area 
final_time = .00001; % s  
  
x = linspace(0,L,50); 
t = linspace(0,final_time,50); 
  
%solve pde 
sol_pdepe = pdepe(0,@pdefun,@ic,@bc,x,t); 
  
figure(1) 
plot(t,sol_pdepe') 
title('Solution - Numerical') 
xlabel('Time (s)') 
ylabel('Concentration (L O2/ L bld)') 
  
figure(2) 
surf(t,x,sol_pdepe')  
title('Concentration - Numerical') 
xlabel('Time (s)');  
ylabel('Distance (cm)');  
zlabel('Concentration (L O2/ L bld)');  
  
% function definitions for pdepe: 
% -------------------------------------------------------------- 
function [c, f, s] = pdefun(x, t, u, DuDx) 
% PDE coefficients functions 
global D 
c = 1; 
f = D * DuDx; % diffusion 
s = 0; % homogeneous, no driving term  
% -------------------------------------------------------------- 
function u0 = ic(x) 
% Initial conditions function 
  
u0 = 0; %initial concentration is 0 
  
% -------------------------------------------------------------- 
function [pl, ql, pr, qr] = bc(xl, ul, xr, ur, t) 
% Boundary conditions function 
global C0 
pl = ul-C0; % ul-C0 zero value left boundary condition 
ql = 0; % 1 % no flux left boundary condition 
pr = ur; %ur % zero value right boundary condition 
qr = 0; %0 % no flux right boundary condition 
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